Category Archives: R&D

Our team is dedicated to helping you become an expert in Liquidmetal. To do so, we present the highest level of transparency possible. Recent developments surrounding Liquidmetal capabilities have been featured in the latest version of our design guide.

A new relationship (cross-license agreement) with EONTEC, a major Asia-based manufacturer owned by Liquidmetal Technologies’ CEO, Professor Lugee Li, has led to a significant growth in manufacturing capabilities of amorphous alloys. The expansion in molding capabilities begins with a hot-crucible molding platform, in contrast to the cold-crucible modified ENGEL injection molding machine. This platform allows for a larger shot size, thinner walls, and different alloys. The main difference; Liquidmetal hot-crucible molding machines replace the traditional melt and injection system on a horizontal die-casting machine.

Liquidmetal Technologies Broadens Research Community 2

Every day Liquidmetal® Technologies remains focused on the cutting edge of research and development of amorphous metal alloys (aka metallic glasses). One of the most important aspects of this effort is collaboration with outside researchers and universities. Recently, Liquidmetal scientists began a strong relationship with Vitrified Metals: Technologies and Applications in Devices and Chemistry by presenting at their 1st annual meeting.

Welding is a joining process commonly used to build larger structures out of smaller components. Because amorphous metal formation requires specific critical cooling rates, the part size and thickness are somewhat limited. The ability to weld Liquidmetal® alloy to itself and to other dissimilar metals would extend the engineering applications of amorphous metals, helping to overcome the size limitation and offer more flexibility in part design and performance. Welds provide the strength, efficiency, versatility, and economic advantage necessary to build the myriad of structures and objects all around us – bridges, skyscrapers, automobiles, boats, oil rigs, the International Space Station, jewelry, sculptures (see Chicago’s Cloud Gate, a.k.a. “The Bean”), and more.


We are very pleased to present the results from our first round of ISO 10993 testing for our latest commercial alloy, LM105. ISO 10993 is a set of standards used for evaluating the biocompatibility of a medical device prior to clinical studies. Since several biomedical device companies have shown interest in Liquidmetal® alloys, we thought it would be beneficial to get a jumpstart on pre-screening the alloy for its potential use in biomedical applications. Of course, each biomedical device must undergo its own ISO certifications to account for its specific processing methods, but this set of tests serves to give potential customers confidence that LM105, our beryllium-free commercially available Zr-based amorphous metal alloy, is highly promising as a biomedical device material.

One of our most popular case studies compares various manufacturing methods for a missile component that controls flight. Supersonic missiles are highly sensitive to the exact geometry of control surfaces and precision is mission critical. Canards (French for “duck”) are the pivoting fins attached to the side body of missiles ahead of the main wing that provide stability and maneuverability for a projectile. Supersonic missiles must also shift between subsonic and supersonic speeds and canards affect the airflow against the main wing, altering the center of mass, and shifting the aerodynamic center. Thus, any deviation in geometric specifications will greatly affect flight control, causing extra turbulence and unanticipated movement.

A recent project, along with your feedback, has resulted in successful chess set designs by our summer intern, Cassidy Stevick.

Several people suggested a simple Staunton design to enable players to more easily distinguish the rank and position of the pieces. We have chosen to incorporate a few of these design elements, yet remain close to the original Liquidmetal theme. Traditional Staunton designs are technically possible, but please allow me to explain our intent and direction.

One of the prototypes that we have produced recently is moving closer to production. The prototype showcases the extraordinary elastic properties of Liquidmetal as a clamp. To protect customer confidentiality, we have disguised the geometry but are reporting actual results. We hope these will be of interest to other existing and potential customers.

In the first prototypes, two clamp spring designs were evaluated. A comparable steel solution would be expected to lose efficacy within 100 cycles, as the steel would yield and the clamp force would decrease. For this prototype design, a goal of at least 200 cycles without a decrease in the clamp force was specified. The clamp needed to be opened to create a gap close to the diameter of the circular clamp when closed (about 12mm).

Liquidmetal alloy has high resistance to corrosion for a number of reasons. Firstly, crystal defects, such as grain boundaries and dislocations, can act like galvanic cells to initiate localized corrosion – Liquidmetal does not have any such defects. Secondly, the elements we use in Liquidmetal form mechanically stable oxides which act as a passivating layer. Thirdly, the passivating layers form uniformly on the Liquidmetal surface, and so passivating elements are more effective than similar elements in a crystalline alloy.

Over the years, Liquidmetal Technologies have done various corrosion studies on our materials, and we are taking the chance to summarize some of the results here.

The difference in microstructure between Liquidmetal alloy and other materials may be the most underappreciated difference between Liquidmetal alloy components and products manufactured with other techniques such as metal injection molding (MIM) or additive manufacturing (AKA “3D Printing”).

If you have studied our website or have researched “bulk metallic glass”, you have likely seen an illustration of randomly distributed circles against a white background representing the liquid-like microstructure of Liquidmetal alloys. It is this random atomic structure that fundamentally enables the material properties and process advantages of our alloys. For more background and a history of bulk metallic glasses, please download our Liquidmetal whitepaper.

Physics Today Cover

As Liquidmetal Technologies manufactures parts for new and exciting applications, Liquidmetal alloys continue to gain substantial attention from material scientists and physicists due to the unique properties and performance advantages of its amorphous molecular structure.

In the cover story in the February 2013 (Volume 66, Issue 2) print edition of Physics TodayIssue Cover, Liquidmetal Technologies’ class of materials (scientifically refered to as bulk metallic glasses) is featured in the article written by Dr. Jan Schroers, Professor of Mechanical Engineering & Materials Science at Yale.